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Abstract
The progress of the factorization method since the 1935 work of Dirac is briefly
reviewed. Though linked with older mathematical theories the factorization
seems an autonomous ‘driving force’, offering substantial support to the present
day Darboux and Bäcklund approaches.

PACS numbers: 03.65.Ca, 03.65.Ge, 03.65.Fd

1. Introduction

Some exceptional properties of our universe [1, 2] make possible the existence of atoms,
galaxies and humans. Some doctrines say that our universe is not unique. New ‘baby
universes’ are constantly born [3, 4]: some of them unable to host stars and galaxies, some
misanthropic (no humans), some collapsing fast—and of course, we live in that which permits
our existence! In a round table discussion (Warsaw 1988) a provocative question was asked:
how it is that physical bodies typically interact with oscillator and Coulomb potentials—those
for which the motion equations can be exactly solved? So, was the universe created specially
to make possible our science? A voice from the public objected: since we are constructed
(grosso modo) of Coulomb and oscillator potentials, our minds created a math in which
these potentials are solvable. In other universes, in which the physical laws could be altered,
intelligent beings would develop a distinct type of mathematics in which a different class of
potentials would be exactly solvable. Can we guess this kind of mathematics? Unfortunately,
chances are low. Yet, we can develop some techniques which already a century ago permitted
new classes of exactly solvable spectral problems to be obtained. One of them exerts a special
influence on our way of thinking.

Below, we report the progress of the factorization method in its most elementary form;
we shall show that each step of the method is translated into some new physical ideas.

Since our review crosses several areas where distinct notation and units are used, we
try to respect all particular traditions (without explaining every time), i.e., when discussing
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the physical results, our Schrödinger Hamiltonians will have the traditional form H =
− 1

2
d2

dx2 + V (x) and the ‘creation’ and ‘annihilation’ operators will be A± = 1√
2

(∓ d
dx

+ x
)

(the
physicist would like to see the particle number N accepting the eigenvalues n = 0, 1, 2, . . .).
However, if referring to mathematical works, we shall use the ‘Hamiltonians’ H = − d2

dx2 +u(x)

(the mathematicians would be outraged by the unnecessarily complicated 1/2, affecting the
simplicity of their formulae as well as the traditional KdV coefficients).

2. The method of factorization

The credit for the factorization is usually given to Schrödinger [5, 6], but the technique
appears first in Dirac’s book [7] as a little stratagem to solve the spectral problem for the
one-dimensional quantum oscillator. The idea was that the oscillator Hamiltonian can be
written in terms of two first-order differential operators:

H = 1

2
p2 +

1

2
x2 = A†A +

1

2
, (2.1)

A = 1√
2

(
d

dx
+ x

)
= 1√

2
e− x2

2
d

dx
e

x2

2 (2.2)

with the corresponding formula for A†, and

[A,A†] = 1, HA† = A†(H + 1), HA = A(H − 1). (2.3)

Expressions (2.1)–(2.3) show immediately the existence of the ground state |0〉 and allow us
to generate explicitly the higher energy states, without integrating any differential equation:

A|0〉 = 0 ⇒ |0〉 = 1√
2

e− x2

2 (2.4)

|n〉 = 1√
n!

(A†)n|0〉 = cnHn(x) e− x2

2 ; Hn(x) = (−)n e
x2

2
dn

dxn
e− x2

2 . (2.5)

Later, some authors considered the Dirac ‘stratagem’ as just an accidental trick, too limited
to replace the genuine Sturm–Liouville problem. Yet, very soon, the ‘little trick’ dominated
almost all quantum physics. Indeed, we became dependent: instead of being our tools, A,A†

turned our way of thinking. We stick to them even in adverse situations, e.g. looking for QFT
in non-inertial frames (no physical sense granted [8]); or in curved space–time, where the
vacuum |0〉 and the operators A

†
k, Al are not uniquely defined. (So, to which of many vacua

should the system jump if induced to radiate? We do not know, yet we apply A,A† [9]).
Soon, it was proved that the algorithm is not at all limited to the harmonic oscillators. The

works of Schrödinger, Infeld et al [5, 6, 10–12] identified four classes of Hamiltonians
admitting an exact factorization treatment. Each one is a finite (or discrete) family
of structurally similar Hamiltonians Hm, intertwined by a sequence of ‘creation’ and
‘annihilation’ operators A

†
m,Am:

A†
mAm = Hm−1 + εm, AmA†

m = Hm + εm; m = 1, 2, . . .
(2.6)

⇒ AmHm−1 = HmAm; Hm−1A
†
m = A†

mHm.

The chain breaks if one arrives at the vector 0, and this is precisely the condition defining
the discrete spectrum (cf [13]). The method shortens remarkably the solutions of the known
eigenproblems (thus, e.g., one can construct immediately the spherical functions, the ‘little
Bessels’, hypergeometric functions [14, 15], etc, without pilgrimage to the handbooks of
special functions; see the remarks by Infeld [10]).
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The further development shows an additional flexibility of the scheme which permits one
to go beyond the four Infeld–Hull classes [12] by constructing the ‘deformed factorizations’.
As it seems, this aspect first appears in a paper of Deift [16] (conceived independently of
the physical trend [5–7, 10–12]). Returning to the original Sturm et al works [17–19], Deift
considers a pair of operators A = b d

dx
b−1, A† = −b−1 d

dx
b, where b is differentiable, without

nodal points in R. Then

A†A ≡ H = − d2

dx2
+ V (x), AA† ≡ H̃ = − d2

dx2
+ Ṽ (x) (2.7)

where V (x) = b−1b′′ and Ṽ (x) = b(1/b)′′, so b and b̃ = b−1 fulfil the eigenequations

b′′ − V (x)b = 0; b̃′′ − Ṽ (x)̃b = 0 (2.8)

with the potentials interrelated by

Ṽ (x) = V (x) − 2
d2

dx2
ln b(x). (2.9)

For simplicity, we skip the problem of norms and Hilbert space domains; they will be separately
addressed if necessary. If b has no nodal points, H̃ has no new singularities and b̃ is an
eigenfunction of H̃ (typically, b̃ is normalizable if b is not). Some more assumptions about the
structure of H are adopted in [16], e.g. that it has a finite number of bound states which can be
either deleted or added one by one. This becomes useful in an elegant solution of the inverse
spectral problem [20], but the general consequences of the algorithm go beyond that. Thus,
e.g., the deformed factorization applied to the harmonic oscillator (via the Riccati equation
[21]) shows that the well-known Abraham–Moses potentials [22, 23] are a natural product of
the commutation method [24]. When applied properly, the algorithm leads also to a new class
of hydrogen-like potentials on [0, +∞) without new singularities [25].

The ‘strategm’ has soon opened some new windows into the future and into the past.

3. The Darboux heritage

For several decades the methods of Bäcklund and Darboux were applied in the mathematical
theory of solitons [26, 27]. However, the true revival occurred afterwards. In 1984 Andrianov
et al [28–31] showed that the use of the ground state eigenfunction to transform the Schrödinger
operator (see, e.g., [16]) was not an accident but it had deeper roots in the 19th century Darboux
result [32]. The fragment of Darboux’s work which attracted so much attention was the simple
statement: if u(x) fulfils the second-order differential equation −u′′ + [V (x) − ε]u = 0 and if
−θ ′′ + V (x)θ = 0, then the function

ũ =
(

− d

dx
+ θ ′/θ

)
u (3.1)

solves the new second-order equation −ũ′′ + (Ṽ (x) − ε) = 0 with

Ṽ (x) = V (x) + θ
d2

dx2
θ−1 (3.2)

(see [32] p 1458). Expression (3.1) can be easily recognized as the ladder operator of
the factorization method. It was henceforth concluded that all the 20th century quantum
mechanical strategms are descendants of the Darboux theorem. The same point was raised by
Luban and Pursey [33–35], who suggested that all the results derived from the factorization
method (since Dirac and Schrödinger [5–7]) are nothing but applications of the Darboux
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method. This last statement, though, must be taken ‘with a grain of salt’1. Looking carefully,
the Darboux theorem was indeed a common denominator of many new results. But not the
only one! What gave the entire 20th century trend its exceptional vitality was indeed the
commutation algorithms derived from the ‘little trick’ (2.1). Darboux ignored this particular
aspect; he could not predict that his theorem would be obtained some day just by commuting
the operators. Yet, it was precisely the simplicity of the factorization which rescued his
theorem from the past. Moreover, even if superficial, the ‘commutation algorithm’ almost has
some of the power of medieval spells: a few simple words just calling to existence some new
forces of nature . . . .

While the Darboux heritage is rescued, it is worth remembering this particular
circumstance.

4. Is our universe supersymmetric?

An additional message of the commutation rules was for some time hidden under the
calculational noise of quantum field theories (QFT). Yet, already in 1965–1970 a new type of
symmetry coupling the bosonic (tensorial) and fermionic (spinorial) degrees of freedom was
being studied by Miyazawa [36] and by Golfand and Lightman [37]. The next important step
(taken independently) was due to Volkov and Akulov [38, 39] and the subsequent breakthrough
(independent as well) appears in Wess and Zumino [40] (see also Zumino [41]), where
the fermions and bosons have an equal status in the fermion–boson multiplets due to the
supergauge transformations [40, 42–44]. The main attractive force of the new symmetry was
the cancellation of the vacuum energies of the fermionic and bosonic components raising the
hopes that one might avoid at least a part of infinities of non-renormalizable QFT (e.g. in
quantum gravity.) However, a practical difficulty was the ‘dead wood’ of QFT (an ironic title
of Dirac’s paper [45].) Finally, in his 1981 work [46], Witten identifies the ‘elementary cell’
of the theory, later known as supersymmetric quantum mechanics (SUSY QM); see also [47].
Quite curiously, its mathematical skeleton coincides with the ‘little stratagem’ of Dirac et al
[5–7, 10–12, 16].

In its simplest form, it involves just a pair of bosonic and fermionic ‘nests’ which can
be occupied by nB bosons and nF fermions (nB = 0, 1, 2, . . .; nF = 0, 1), with the Hilbert
space of states H in the form of the tensor product HB ⊗ HF spanned by the Fock basis
|nB, nF 〉 = |nB〉|nF 〉. If the bosons and fermions do not interact, the system admits a simple
representation as the bosonic⊗fermionic oscillator, with the Fock states generated by the
corresponding creation and annihilation operators σ±, A± (please identify A−, A+ with A,A†

of section 2):

|nB, nF 〉 = 1√
nb!

AnB

+ σnF

+ |0B, 0F 〉 (4.1)

where σ 2
± = 0, [A−, A+] = 1 = {σ−, σ+}, and [·, ·], {·, ·} mean the commutator and

anticommutator, respectively. In order not to complicate notation we shall use the same
symbols A± to denote the bosonic operators acting in HB , as well as in HB ⊗ HF (in this

1 Indeed, the entire development shows chronological gaps and inconsistencies; the ideas emerge, disappear and
re-emerge again. In the idealized story, Darboux discovered his 1882 theorem which was then applied by Dirac et al,
generalized by Crum and Krein. But in the real history, Dirac et al knew nothing about the Darboux theorem; the
real Crum ignored that he was generalizing the Darboux method; he apparently did not care about Schrödinger [5, 6]
and others; Krein did not know about Darboux, Deift refers only to Crum but neglects the entire physical trend, some
other papers [24] follow Infeld and Hull, but ignore Deift, and so on.
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last case they affect just the bosonic parts of the state vectors (4.1); the opposite for σ±.) The
Hamiltonian reads

H = (
A+A− + 1

2

)
ωB +

(
σ+σ− − 1

2

)
ωF , (4.2)

where ωB and ωF are the one boson and one fermion energies. If now ωB = ωF = ω > 0,
the vacuum contribution to the energy cancels:

H = ωA+A− + ωσ+σ−. (4.3)

Vacuum |0〉 = |0B, 0F 〉 is still unique, but the higher energy levels of H are degenerate,
spanned by pairs of eigenvectors which differ only by replacing one boson by one fermion or
vice versa [48]. The fact is naturally expressed by introducing the ‘permuting operators’
Q− = A+σ−,Q+ = A−σ+ (called the supercharges) and by noting that H commutes
with Q±. The structure of H is then conveniently represented by using two orthogonal
projectors P1 = σ+σ− = |1F 〉〈1F | and P0 = σ−σ+ = |0F 〉〈0F | onto subspaces with or
without one fermion. By adopting the Pauli matrix representation of the fermionic operators,
σ1 = (0 1

1 0

)
, σ2 = (0 −i

i 0

)
, σ3 = (1 0

0 −1

)
, σ+ = 1

2 (σ1 + iσ2) = (0 1
0 0

)
, σ− = 1

2 (σ1 − iσ2) =(0 0
1 0

)
, P1 = (1 0

0 0

)
, P0 = (0 0

0 1

)
, one obtains

H = ωA+A−P0 + ωA−A+P1 =
(

H1 0
0 H0

)
(4.4)

where H0 = ωA+A− and H1 = ωA−A+ are the bosonic and fermionic Hamiltonians (more
exactly, both are bosonic: H0 in the absence, H1 in the presence of the one fermion permitted).
In the standard convention (ω = 1),

Q− =
(

0 0
A+ 0

)
, Q+ =

(
0 A−
0 0

)
(4.5)

with Q± and H obeying the supersymmetric (SUSY) algebra

H = {Q−,Q+}, [H,Q±] = 0, Q2
± = 0. (4.6)

The SUSY rules (4.6) assure the well-known spectral degeneracy of H [48]. However, they
neither require the traditional oscillator form of A± nor the commutation rule [A−, A+] = 1.
To satisfy (4.6), it is sufficient to employ an operator pair A∓ = A

†
± = 1√

2
(±ip +α(x)), where

x and p are two real operators in HB fulfilling [x, p] = i. Then by adopting the representation
of the state vectors ψ ∈ HB as the ‘wavefunctions’ ψ = {ψ(x)}, with p = 1

i
d

dx
, one arrives at

the bosonic and fermionic parts H0 = A+A− and H1 = A−A+ in the form of two Schrödinger
Hamiltonians

Hi = −1

2

d2

dx2
+ α2(x) + (−1)iα′(x) (4.7)

intertwined by the mechanism of [5, 6, 10–12, 16, 24, 25, 49]. As it seems, the equivalence
of both designs was almost simultaneously noted by Andrianov et al [28] and by Nieto [50].
If, furthermore, α(x) has an adequate boundary behaviour at x → ±∞, then the Hamiltonian
H0 has the ground state |0B〉 with the eigenvalue E0 = 0, absent in the spectrum of H1; all
other eigenvalues E1, E2, . . . , of H0 coincide with the spectrum of H1, granting again the
double degeneracy of the higher levels of H. The spectra of H0 and H1, in general, do not need
to be equally spaced; they paint a picture of a self-interacting bosonic field occupying two
anharmonic oscillator ladders in two supersymmetric sectors of H ([48, 49], see also Stedman
[51], section 3) where each bosonic state is coupled by Q± with its partner in one fermion
sector (e.g. graviton with gravitino, etc). By observing the evolution of the subject, one cannot
overlook the role of the factorization as the main conceptual and technical tool [29, 49–52].
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While the boson–fermion equivalence appeals to the imagination, the existence of the
supersymmetric structures in the real world has been discovered in much more modest
circumstances. Thus, e.g., the non-relativistic Pauli electron in a homogeneous, time-
independent magnetic field �B pointing along the z-axis, with the Landau gauged vector
potential �A = (0, xB, 0), obeys the Hamiltonian

H = 1

2m

(
�p − e

c
�A
)2

− e

2mc
�B · �σ (4.8)

which after elementary transformations is reduced to

Hζ ≡
(

p2
ζ

2m
+

m

2
ω2

Bζ 2

)
− ωB

2
σz (4.9)

where ωB = eB
mc

and ζ = x − c
eB py (the inessential variables are separated and an additive

constant renormalized). The oscillator and spin parts of (4.9) define Landau and Pauli levels.
The particular value of the electron magnetic moment implies that the Landau and spin spacings
are exactly the same, yielding a typical supersymmetric spectrum [49, 53, 54] (see also the
complex equivalent [55]). Simple magnetic models for the general case of (4.7) exist as well for
the Pauli electron in the external potential V (x) = α2(x) associated with the inhomogeneous
magnetic field of intensity B(x) = 2α′(x) orthogonal to the axis x (but then, the strict relation
between the potential and the magnetic parts must be a priori assumed) [51, 53, 55, 56].
For the case of a magnetic monopole, see [57]; for the atomic and nuclear problems, e.g.
[58, 59]. Note also the relevant scenarios based on the Dirac equation [49, 60–66]. The
existence of the magnetic models encourages the conclusion that ‘supersymmetry exists in
nature’ [49]. Yet, this is not exactly the same as to confirm the original idea about the
boson–fermion equivalence [40, 41].

Indeed, some gaps in the analogy call attention. The elementary models [48, 49, 51, 53, 56]
belong to orthodox quantum mechanics, where there are no fundamental doubts as to the
physical reality of all states and observables. Thus, any self-adjoint operator in the Hilbert
space H represents a legitimate observable, and any vector |ψ〉 ∈ H is a physical state which
can be produced by an adequate dynamical process. Even if it is not so easy to obtain an atomic
electron in a superposed state of occupying simultaneously two different energy levels, such
states are efficiently created by Rabi rotations in microwave cavities [67]. The ‘inverted free
evolution’ e+iτp2/2, τ > 0 and the squeezing operator Us = eiλ pq+qp

2 , s = e−λ do not resemble
the standard evolution operations; yet both can be induced by time-dependent magnetic fields
[68–71]. In general, in a well-equipped laboratory, the quantum mechanical systems (of
positive energy) are completely manipulable [72–74] (in spite of the ‘difficult’ configurations
[75, 76]), a fact of considerable interest for quantum control computing [77, 78].

An analogous structure for the genuine boson–fermion supersymmetry is far from obvious.
Since there is no superselection rule, each degenerate subspace of H, apart from the Fock
vectors, must contain its coherent superpositions. Thus, e.g., the first degenerate eigensubspace
(E = E1) spanned by |1B, 0F 〉, |0B, 1F 〉 contains all non-trivial combinations

ξ0|1B, 0F 〉 + ξ1|0B, 1F 〉, |ξ0|2 + |ξ1|2 = 1, 0 = ξ0, ξ1 ∈ C, (4.10)

each one intuitively interpretable as a hybrid particle, a superposition of a boson and fermion
(less provocative: an entangled state of the field superposed of having one boson and one
fermion.) In fact, in each n-particle subspace Hn, the ‘hybrids’ appear as the eigenvectors of
the Hermitian supercharges

Qϕ = eiϕQ+ + e−iϕQ− (4.11)
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defining pairs of eigenstates |±〉 = 1√
2
(eiϕ/2|1, 0〉± e−iϕ/2|0, 1〉) with the eigenvalues ±√

En,
each one representing a legitimate orthonormal basis (‘albeit impure’, says DeWitt [79],
section 5.7, p 291). Can they be physically observed? The chances look slim. The spinorial
charges are not measurable (Haag [80]). While still in the twice degenerate energy subspace
of H, the ‘boso–fermion’, in a sense, is in an embryonic state, in which the characteristics of an
adult individual are invisible. If perturbed, the specimen incubates, but then the supersymmetry
is broken. The operational evidence of its previous nature is practically lost [46, 47]. A
different chapter of the theory is the hypothesis about the need for super-Hilbert spaces [79],
still without any experimental verification.

Yet, there is something incredible in the numerical coincidence between the Landau levels
and the Bohr magneton, even if spoiled by radiative corrections. How many ‘baby universes’
should have been created to assure such an accidental coincidence? Whatever the mechanism,
it means that the story must continue.

5. Quest for exact solutions

In fact, after recognizing its own status as the SUSY QM and adopting the Darboux heritage,
the intertwining progressed fast. The transformed Hamiltonian models were carefully analysed
in a sequence of 1985–87 papers of Sukumar [52, 81–84] without any a priori assumptions
concerning the number of bound states. As a side effect, Sukumar’s studies show a notable
advantage of the new technique as compared to the previous inverse algorithms [22, 85]. In
what follows, the concept of the SUSY QM visibly extends: it refers rather to the general
Darboux intertwining than to a specific spectral structure. Indeed, it seems that each step of the
factorization traduces itself into some spark of inspiration for other domains. The following
incomplete list illustrates the phenomenon.

5.1. Higher order supersymmetry

Since Infeld and Hull [10–12] it has been obvious that the intertwinings (now called the
Darboux transformations) can be iterated. Some premises about the higher order intertwining
operators A, A† already appeared in 1984 [24, 86]. In 1992, the second- and third-order
differential operators A were applied by Dubov et al to obtain new Hamiltonians with equally
spaced spectra, HA = A(H + ω) [87, 88]. They arrive at families of new potentials with
‘ladder spectra’, though without granting a priori that each ladder is only one and that it is
infinite (see also [89, 90]). The subject was almost simultaneously approached by Veselov
and Shabat [91], who presented a general theory of supersymmetric chains, including the case
of equally spaced spectra.

The independent methods of ‘comparative anatomy’ permitting the evaluation of the
shape of the Darboux transformed potentials without too heavy analytic machinery have been
developed by Zakhariev et al [92–95]; they reveal the intricate forms and abundance of the
new exact solutions in QM; see also their study of multichannel phenomena [96–98].

5.2. The polynomial algebra

The corresponding higher order algebra was designed in 1993 by Andrianov et al [99]. Suppose
a Hamiltonian H0 is intertwined with a chain of Hamiltonians H1, . . . , Hn by a sequence of
the first-order differential operators (2.6). Assume, however, that we are interested only in the
initial and final Hamiltonians H = H0 and H̃ = Hn and we wish to interpret the transition



10014 B Mielnik and O Rosas-Ortiz

H → H̃ as a single intertwining step implemented by the nth-order differential operators
A,A†, where A = A1A2 · · · An:

AH = H̃A, A†H̃ = HA†. (5.1)

Can we interpret H and H̃ as a supersymmetric pair? Due to a (partial) isospectrality of H and
H̃ , the answer is positive, but it means a generalization of the supersymmetric algebra (4.5),
(4.6). Indeed, consider the new ‘supercharges’ and the Hamiltonian H:

Q+ =
(

0 A

0 0

)
, Q− =

(
0 0
A† 0

)
; H =

(
H̃ 0
0 H

)
. (5.2)

Then Q2
± = [Q±, H] = 0, but

{Q+,Q−} =
(

AA† 0
0 A†A

)
(5.3)

where none of A†A,AA† coincides with H or H̃ . Yet, due to (5.1)

A†AH = A†H̃A = HA†A, (5.4)

and similarly AA†H̃ = H̃AA†; i.e., A†A and AA† commute with H and H̃ , respectively. An
inductive argument [91, 100] shows that A†A and AA† must be nth-order polynomials of H and
H̃ : A†A = f (H), AA† = g(H̃ ). Moreover, (5.1) implies f (H) = A(A†A) = (AA†)A =
g(H̃ )A = Ag(H) ⇒ A†Af (H) = A†Ag(H) ⇒ f 2(H) = f (H)g(H); so for any eigenvalue
E of H (discrete or continuous) one must have f 2(E) = f (E)g(E). Since the finite-order
differential operators in L2(�) have infinite sets of spectral values, both polynomials coincide
f ≡ g. Hence, one ends up with a generalized (polynomial) SUSY algebra (5.1)–(5.3), where
(5.3) reads

{Q−,Q+} =
(

f (H̃ ) 0
0 f (H)

)
= f (H). (5.5)

If, moreover, the intertwining operator A is a product of n first-order steps, A = An, . . . , A1,
intertwining the Schrödinger’s Hamiltonians Hj,Hj+1 via the factorization constants λj ,
j = 1, 2, . . . (2.7), then f (H) = (H − λ1), . . . , (H − λn). If the chain of intertwinings closes
AH = HA, then Hamiltonian H possesses a non-trivial internal symmetry, interpretable
in terms of the integrable Hamiltonian systems [101]. For n odd, it distinguishes a class of
exceptional potentials with a final number of spectral gaps [91, 102] (one of the surprising ways
of defining the special functions!). If the chain produces H̃ = H + w ⇔ A(H + w) = HA,
the required symmetry of H leads to the Painlevé potentials (see Veselov and Shabat [91] and
Adler [103]).

While some hints about the polynomial structure (5.5) appear earlier [87], its mature
formulation was given in [99] and completed in [104] (see also [105, 106]).

5.3. The squeezed intertwining and further progress

In a different type of intertwining A,A† are no longer finite-order differential operators, but
involve a squeezing A = 1√

2
(ip + α(x))Us , with U

†
s xUs = sx, U

†
s pUs = s−1p, the SUSY

partner of H0 is not a new Schrödinger’s Hamiltonian, though it is proportional to one:

s2AH0 = H1A. (5.6)

The phenomenon was first studied by Spiridonov [107] (see also [108, 109]); it seems the
unique case when the spectrum of H0 is proportionally deformed (i.e. the spectral values
E(1)

n = s2 E(0)
n , n = 1, 2, . . .). If moreover H1 coincides with H0 + ω, then (5.6) tells that the
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spectrum of H0 is conformal; if E is an eigenvalue of H0 with an eigenvector |φ〉 and A|φ〉 has
a finite, non-vanishing norm, then s2(E + ω) is a spectral value as well; in particular, if ω = 0,
the spectrum has the tendency to form geometric sequences. A tempting question is, whether
some more general functions of H could be obtained by intertwining

AH = φ(H)A. (5.7)

Such spectral transformations, though, would require different types of intertwining, since
evidently (5.7) becomes impossible if φ is a polynomial and A is a finite-order differential
operator (the orders of derivatives on both sides disagree!)

More general algebras too deserve attention. Following the SUSY formalism a natural
idea was to use the same language to describe the (hypothetical) parastatistical phenomena.
Here, the role of the fermionic creation–annihilation operators σ±, σ 2

+ = σ 2
− = 0 is assumed

by their analogues with the longer nF -ladders, i.e. nilpotent a± with an+1
± = 0, an

± = 0 (no
more than n parafermions permitted in one state). The idea was proposed by Rubakov and
Spiridonov [110], who designed the supercharges Q± in the form of nilpotent matrices with
bosonic entries. Alternative models were soon proposed by Beckers and Debergh (an exact
parasupersymmetry, triple degeneracy [111, 112], a parasuperspace [113]) and by Durand
and Vinet (cyclotronic and Morse models [114], the spin 1 representation of a± [115]);
another interesting approach is due to Plyushchay [116, 117]. It is also worth noting that the
fundamental subject of anyons (see Goldin et al and Wilczek [118–120]) admits as well a
natural algebraic treatment [121, 122].

5.4. The problem of reducibility

The question as to whether the nth-order intertwining can always be reduced to the conventional
first-order steps was raised in 1995 by Andrianov et al [104] and was systematically
examined by Bagrov and Samsonov [100]. As found in [100] each finite-order intertwining
operator A splits naturally into a chain product of irreducible first- and second-order steps.
Each first-order step is of traditional form Ai = 1√

2
(ip + αi), intertwining two subsequent

(conventional) Schrödinger’s Hamiltonians Hi,Hi+1. Each irreducible second-order term
Aj = d2

dx2 −{
a(x), d

dx

}
+b(x) can be decomposed into a product of two first-order intertwiners,

but the price is that they expand the SUSY chain, inserting between Hj and Hj+1 a new atypical
Hamiltonian hj (Hj → hj → Hj+1) which is either complex or contains a new singularity
(while Hj+1 is again orthodox!). As found in [100] the complex hj typically appear for pairs
of complex roots of f in (5.5), a phenomenon which has lately awoken increasing interest (see
section 7).

5.5. The double SUSY step

The reduction of the SUSY chains to the elementary first- and second-order steps turned
more attention to the ‘paso doble’ of the supersymmetry, i.e. the second-order Darboux–Crum
transformation [19]

V (x) → Ṽ (x) = V (x) − d2

dx2
ln W(u1, u2) (5.8)

where W = u1u
′
2 − u2u

′
1 is the Wronskian of u1, u2. In the traditional first-order steps a lot

of care was taken to apply the intertwining without introducing an extra singularity [123].
To achieve this, the Darboux transformations (3.1) were typically generated by (unphysical)
eigenfunctions u of the initial Hamiltonian H0, with the ‘eigenvalues’ ε below the ground
state energy E0 (of course, if σ(H0) is bounded from below). If R � ε > E0 (e.g. ε between
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two energy levels E0, E1) the transformation could not be carried out without introducing a
new singularity, requiring a redefinition of the domain and of the Hilbert space itself. Yet,
as detected in Krein [124], Sukhatme [125], Samsonov [126], Fernández [127] and proved
generally by Samsonov [128], this limitation does not concern the second-order Darboux steps
(5.8). Indeed, let H0 be a Schrödinger Hamiltonian and u, ũ two nontrivial (not necessarily
normalizable) real solutions of the eigenvalue equations

H0u = εu; H0ũ = ε̃ũ, ε < ε̃. (5.9)

The regularity of the second-order Darboux transformation induced by u and ũ depends on
the absence of the nodal points of the Wronskian W(x) = ũu′ − ũu′, where (5.9) assures that
W ′(x) = (ε − ε̃)ũu. A key step is now to choose u(x) with n + 1 nodal points ν1, . . . , νn+1,
separated by n nodal points ν̃1, . . . , ν̃n of ũ:

ν1 < ν̃1 < ν2 < · · · < ν̃n < νn+1. (5.10)

The configuration (5.10) looks atypical (were u(x), ũ(x) normalized eigenvectors with ε < ε̃,
then ũ would have more roots than u). However, u, ũ belong to wider ‘unphysical eigenspaces’,
where (5.10) can occur for ε, ε̃ in the same resolvent interval (Ek, Ek+1), Ek < Ek+1 [129].
Adopting the array (5.10), Samsonov shows that W ′(x) changes the sign 2n + 1 times as x
crosses the nodes (5.10), so it has opposite signs in (−∞, ν1) and in (νn+1, +∞). Moreover,
the signs of W ′(x) for x > νn+1 and x < ν1 coincide and anticoincide, respectively, with
the signs of W(νn+1) and W(ν1), hence |W(x)| is an increasing function of |x| for x < ν1

and x > νn+1. It means that W(x) cannot have nodes in (−∞, ν1] ∪ [νn+1, +∞). Further
arguments show that W has no roots in [ν1, νn+1] (see [128]). So, W has no roots in R and
must generate a nonsingular second-order Darboux transformation. It is interesting that, for
the opposite configuration, i.e., if u has n roots and ũ has n+ 1, the last statement might also be
true, but the proof requires a detailed study of the asymptotic behaviour of V0(x) (see [130]).

The subject was independently addressed in a sequence of studies of the second- and
higher order Darboux transformations [131–140] (see also the ample research reported in
[53, 141, 142] and the literature quoted there.) In particular, the confluent case ε̃ → ε [143]
seems of interest: if two encrusted levels coincide, the double Darboux step permits the
construction of a class of the exceptional oscillating potentials which vanish for x → ±∞,
but admit bound states sustained by multiple reflection from V (x) minima and maxima as
x → ±∞; see [125, 144, 145].

5.6. Periodic potentials

The Darboux methods are not limited to the discrete spectra, they can also be used to ‘sculpt’
the periodic potentials. By applying the single Darboux step (4.7) with ε � E0, where E0

is the ‘ground energy’ (i.e. the lower bound of the spectral continuum) one arrives at a new
nonsingular V1(x), in general aperiodic and non-locally deformed (cases when periodicity is
not lost can be as interesting [146]). By applying a double 1-SUSY step (5.8) with a pair of
the factorization constants ε1 < ε2 in one of the spectral gaps [E′

n, En+1], one can also insert
into the gap two discrete energy levels representing the pair of bound states created by the
lattice impurity [147, 148]. As interesting are the techniques of inserting discrete levels inside
the spectral bands [125].

An intriguing effect can show up if one applies chains of many first-order Darboux
transformations (the ‘dressing chains’, cf Veselov and Shabat [91]). For some potentials the
chain can close (Hn = H0); a curious phenomenon which distinguishes special functions with
finite numbers of spectral gaps. The complete theory exceeds this report (but see Veselov,
Shabat [91] and Khare and Sukhatme in this issue). Let us only mention a simple case,
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Figure 1. The Lamé potential V (x) = 2msn2(x|m) with m = 0.5 (grey) and its first-order regular
deformation (black) with a bound state energy level (contact effect) at ε = −0.2 < E0 = 0.5
(dashed).

concerning an apparently frustrated effect of some Darboux transformations [149–152]. The
effect is that for some potentials, the Darboux transformation has almost no effect!

Indeed, let H0 = p2

2 + V (x), where V (x) is periodic and at least twice differentiable.

Suppose we apply A = 1√
2

(
d

dx
+ α(x)

)
, getting AH = H̃A, where H̃ = p2

2 + Ṽ (x).
The computer simulations show that for a class of periodic potentials V (x), the Darboux
transformed Ṽ (x) is just rigidly displaced: Ṽ (x) = V (x + δ), where δ can take continuous
values depending on the choice of α(x). The result looks disappointing: typically, one uses the
Darboux method to transform rather than preserve the form of V (x). Yet, why precisely can it
happen? By writing the Riccati equations interrelating α(x) with V (x) and Ṽ (x) = V (x + δ)

one easily shows [153]

α2(x) = V (x) + V (x + δ) − 2ε (5.11)

α′(x) = V (x + δ) − V (x). (5.12)

Since different ε correspond to different δ, denote ε = ε(δ) ≡ −2ξ(δ). Assume now that V (x)

is even and choose the new variables u = x, v = −δ − x; simple calculation (differentiate
(5.11) and compare with (5.12)) yields

ξ(u + v) + V (u) + V (v) = 1

4

[
V ′(u) − V ′(v)

V (u) − V (v)

]2

. (5.13)

As one can observe (5.13) coincides with the well-known addition law for the elliptic functions,
if ξ(δ) coincides with the Weierstrass function ℘(δ) (which is well assured by (5.11)–(5.13),
see [153]). It looks as if the addition laws (5.13) for the elliptic functions were waiting about
100 years to reveal their supersymmetric sense. Can this be of some use? As it seems, it can.
The eigenfunctions of H which generate the Darboux displacements (5.11), (5.12) of V (x)

are the nontrivial Bloch solutions u±(x) of Hu = εu in the (unphysical) resolvent set of H
with the ‘factorization energy’ ε < E0. Of them u+ tends to ∞ as x → +∞, generating a
positive displacement, while the other u− → ∞ for → −∞, generating a negative δ. The
remaining (unphysical) eigenfunctions u = c+u+ + c−u− (c± ∈ C) have no nodal points in R

but diverge for both → ±∞. By choosing one such untrivial u with c± = 0 as a Darboux
generator, one ends up with a nonlocal deformation shifting V (x) to the right as x → −∞
and to the left as x → +∞ (or vice versa); thus producing a non-periodic Ṽ (x) in which
two contradictory displacements either collide or diverge (see figure 1), giving the contact
effect or a quantum well in the middle [154]. The new results for the second-order SUSY
displacements were recently obtained by Samsonov et al [155].
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5.7. The finite differences

The finite difference analogues of the differential operators are as interesting and intrigued
many authors, including Euler [156]. The three-term recurrences of QM are indeed the second-
order difference equations; albeit the correspondence between the difference and differential
domains is not one-to-one. Thus, e.g., in the linear space of functions ψ : R → C, with
the multiplication by x and displacement operators D defined as (xψ)(x) = xψ(x) and
(Dψ)(x) = ψ(x + 1), the operations xD−1 and D commute as [D, xD−1] = [

d
dx

, x
] = 1

(if x ∈ Z, the analogy with A,A† is imminent; the representations in terms of higher order
differential operators are as natural [157–160]). Finer imitations of x and d

dx
are also available.

Taking ∇h = Dh−1
h

, where (Dhf )(x) = f (x + h), one has[∇h, xD−1
h

] = 1; ∇h −→
h→0

d

dx
, xD−1

h −→
h→0

x (5.14)

which intervenes in finite difference analogues of the traditional quantum mechanical problems
(see, e.g., Toda [161], Dubrovin et al [26, 27, 102], Turbiner, Chryssomalakos [162, 163],
Suzko et al [164, 165], Reyes and Rosu [166], Beals et al [167, 168]). Simultaneously, the
finite difference techniques focused attention on q-deformed structures, whose central element
is the ∂q-derivative

∂qψ(x) = ψ(x) − ψ(qx)

(1 − q)x
, 0 < q < 1 (5.15)

(see, e.g., Odzijewicz [169]; a more symmetric definition, cf [170]). The ∂q has some notable
past. An intuitive integration inverting (5.15) was de facto performed by Archimedes to find
the surface bordered by a parabola; Fermat used the geometric partition a, qa, q2a, . . . , of
the interval [0, a] to integrate f (x) = xκ ; the formal definitions were given subsequently
(cf [171]).

The intertwining of finite difference operators facilitates remarkably the solution of
recurrence problems [172]. The generalization of q-deformed systems [107, 108] permits
the construction of chains of finite difference Hamiltonians Hk with AkHk = qkHk−1Ak , of
considerable interest to quantum optics [161, 169, 170, 172, 173].

5.8. The debate on coherent states

The spectral structure is not the only subject in SUSY QM. In all intertwined systems the
supersymmetry brings valuable data about the time evolution of quantum states. For the
traditional harmonic oscillator a notable phenomenon is the existence of specially regular
Gaussian states |ξ 〉, for which the Heisenberg uncertainty achieves its lower bound �x�p =
h̄/2, and the packet centres draw the classical phase trajectories. While the advantages of
Gaussian packets were known for a long time [174], it was not noted till 1963 [175] (see also
[176]) that they are the eigenstates of the (non-Hermitian) operator A = 1√

2
(ip + x):

A|ξ 〉 = ξ |ξ 〉, ξ ∈ C (5.16)

and moreover, [A,A†] = 1 implies the analytic expression

|ξ 〉 = eξA† |0〉. (5.17)

The states |ξ 〉 are nonorthogonal and overcomplete [177]. As found subsequently (Klauder
[178], Bargman [179] and Perelomov [180]) they are an example of certain general group
theoretical design. Given a Lie group G (e.g. of Heisenberg–Weyl) with a left-invariant
measure µ and an irreducible unitary representation G � g → U(g) = U(g−1)†, and given a
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fixed state |θ〉, the group driven states |g〉 = U(g)|θ〉 form an overcomplete system providing
a decomposition of unity

I =
∫

Ḡ

|g〉〈g| dµ̄ (5.18)

where µ̄ is induced by µ on the group quotient Ḡ = G/� defined by the isotropy subgroup
� of |θ〉 (cf [180], section 2.3). Note though, that (5.18) holds generically, no matter the
choice of |θ〉, and tells little about the Heisenberg uncertainty �x�p for the ‘coherent states’
|g〉; so (5.18) is not conclusive to identify the traditional coherent states of the harmonic
oscillator. This leads to some open problems if one tries to construct the ‘coherent analogues’
of (5.16), (5.17) for an anharmonic H̃ . Indeed, H̃ may admit various families of ‘nice states’,
but none joining all virtues, i.e.: (a) minimal uncertainty, (b) satisfying (5.16), (c) forming
an overcomplete basis in H. This has opened the way for various competing definitions,
following different philosophies.

In 1994–1999 Fernández et al adopted the idea that the best ‘coherent states’ for the
Abraham–Moses (AM) anharmonic oscillators should be constructed by employing the ladder
operators natural to this family. The AM potentials are strictly isospectral to (2.1) but
the natural ‘creation’ and ‘annihilation’ operators A†, A are of the third order [24]. They
intercommunicate only the excited states of H̃ , leaving its ground state isolated. By postulating
(5.16) Fernández et al [157] obtain a family of non-Gaussian packets, forming an overcomplete
basis in the subspace of the excited states |θ1〉, |θ2〉, . . . , (|θ0〉 excluded), with the Heisenberg
uncertainty slightly above h̄/2. A compact formula analogous to (5.17) is obtained by defining
the operator B† = b†a†(N + 1)−1(N + 2)−1b which commutes with A to [A,B†] = 1 on the
subspace H1 = |θ1〉⊕|θ2〉⊕· · ·, and leading to |ξ 〉 = eξB† |0〉. In [158–160] the construction is
improved by defining Cw = b†f (N)ab, with

[
Cw,C†

w

] = 1 in H2, with an arbitrary parameter
w allowed in the construction of Cw.

The idea has been questioned by Kumar and Khare (K–K) [181] who propose a different
construction of the ‘true’ coherent states, based on the isospectrality of the traditional
and distorted oscillators H and H̃ in [24]. Since σ(H) = σ(H̃ ), there exists a unitary
transformation U such that H̃ = U †HU ; K–K believe it is most natural to apply U to the
coherent states of H constructing the coherent states of H̃ , and therefore, they consider the
states defined in [157–159] ‘incorrect’.

The discussion illustrates indeed the fact that for the transformed systems the concepts
‘split’. Each ‘distorted potential’, in general, admits several classes of nicely behaving states.
It is somewhat platonic to prove what must be the coherent states, if one has no generic
definition. In fact, this is precisely the centre of the problem! Since one does not prove
definitions, the best philosophy, perhaps, is that of ‘all flowers’. Thus, e.g., the K–K states
for the AM potentials enjoy some pleasant properties: they form an overcomplete basis in
the entire H = L2(R) and are associated with the ladder operators which do not omit the
new ground state |θ0〉. However, the idea can be implemented only in special cases when the
initial and transformed Hamiltonians H and H̃ are exactly isospectral. If some new (arbitrary)
energy levels ε1, ε2, . . . , εn are added, then the images of the coherent states of H do not span
the entire space, as they cannot change their original evolution frequencies.

In contrast, the approach by Fernández et al starts ‘from the little’, respecting the SUSY
structure and following the heuristic steps which have lead to the coherent fields in quantum
optics [182]. As an unexpected reward their family has some new qualities (figure 2); in
the limit H̃ → H it does not reduce itself to the orthodox coherent family, but yields new
meta-coherent states of the old oscillator (we do not use the name ‘super’ which seems too
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Figure 2. The uncertainty product for the disputed meta-coherent states |ξ〉 (ξ ∈ C) of Fernández
et al.

abused). As it seems, a similar approach works also for the coherent states of the transparent
wells [183].

An independent quest for coherent states of arbitrary Hamiltonians is presented in an
ample study of Spiridonov [184]. One of the ideas is that for any non-degenerate discrete
spectrum Hamiltonian H, the coherent family ξ → |ξ 〉 should form a generating function of
the sequence of eigenstates |θn〉 (cf also Man’ko et al [185], Bagrov–Samsonov [183, 186],
Seshadri et al [187], Penson and Solomon [188], Antoine et al [189]). As it seems, before
making a final choice (if any) it is worthwhile looking at other levels of physical theory.

6. Is the whole truth in the channel of shallow water?

One of exceptional structures of SUSY QM is the transparent wells of Pöschl–Teller, the results
of multiple application of the intertwining to the null potential V0 ≡ 0. The so generated wells
can host finite sets of bound states, but some qualities of the null potential remain; e.g., being
perfectly visible for the trapped packets, the wells are completely invisible for the |in〉 states
arriving from ±∞; the fact demonstrated easily by their vanishing reflection coefficients
[138, 141].

The most intriguing aspect, however, is their double role: being the simplest solvable
potentials in QM, the invisible wells serve simultaneously as the instantaneous τ = const
profiles for the solutions of the well-known KdV equation

uτ + 6uux − uxxx = 0 (6.1)

which describes the evolution of the localized ‘solitary waves’ in the channel of shallow
water [190], the fact which earns them the name of soliton potentials (note that, in the
physical interpretation of the KdV waves, τ means the time but in the associated Schrödinger
eigenproblem it is just a parameter). As found by Miura, the τ -evolution of the KdV waves
u(x, τ ) leaves invariant the spectrum of the corresponding Schrödinger operator

Hτ = − d2

dx2
+ u(x, τ ) (6.2)

and the reason is that if u fulfils (6.1) then the τ -dependence of Hτ (via u(x, τ )) traduces
itself into a generic isospectral evolution d

dτ
Hτ = [Aτ ,Hτ ], induced by the auxiliary anti-

Hermitian operator Aτ = −4 d3

dx3 + 3
(
u d

dx
+ d

dx
u
)

+ 3ux . Thus, KdV turns out the consistency
condition for the simultaneous validity of (6.2) and the isospectral drift of Aτ . Analogous
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observations allow us to solve other nonlinear equations such as sine-Gordon and cubic
Schrödinger (see Lax [191], Levi [192], Rauch–Wojciechowski [193], the monographs of
Lamb Jr [194], Matveev and Salle [195]). Simultaneously, as noted by Miura et al [196],
Wahlquist and Estabrook [197], (6.2) admits Bäcklund transformations in the form of a
nonlinear superposition law which permits one to determine new solutions of (6.1) in terms
of the known ones. Quite notably, the Bäcklund techniques at the level of KdV mirror the
quantum mechanical intertwining. To see this, forget for a moment about the KdV aspect of u
and consider the Schrödinger Hamiltonian H0 = − d2

dx2 + V0 where V0 is an arbitrary potential

intertwined with a family (infinite or finite) of new Hamiltonians H1(ε) = − d2

dx2 + V1(x, ε) by
the first-order operators A1(ε) = d

dx
+ α1(x, ε), where ε are the factorization constants, i.e.:

H0 = A
†
1A1 + ε and H1 = A1A

†
1 + ε. Consistently, α1 must fulfil the Riccati equations

−α′
1(x, ε) + α2

1(x, ε) = V0 − ε. (6.3)

α′
1(x, ε) + α2

1(x, ε) = V1(x, ε) − ε. (6.4)

Equation (6.3) means that ψ0(x, ε) = e− ∫
α1(x,ε) dx satisfies (for all ε) the original eigenequation

H0ψ0(x, ε) = εψ0(x, ε) (even though ψ0(x, ε) in general does not need to have a finite norm).
Assume that the first-order intertwining (6.3), (6.4) is known for at least two different values
of ε. Then, fixing ε and applying to ψ0(x, ε) the A1(µ) for µ = ε, we must obtain an
eigenfunction of H1(µ):

ψ1(x, ε, µ) =
[

d

dx
+ α1(x, µ)

]
ψ0(x, ε)

= [−α1(x, ε) + α1(x, µ)] e− ∫
α1(x,ε) dx. (6.5)

Consistently, the function α2(x, ε, µ), defined by

ψ1(x, ε, µ) = e− ∫
α2(x,ε,µ) dx (6.6)

must satisfy the next Riccati equation

−α′
2(x, ε, µ) + α2

2(x, ε, µ) = V1(x, ε) − µ. (6.7)

Reading back the definition (6.5) and using (6.6) one has

α2(x, ε, µ) = − d

dx
ln ψ1(x, ε, µ) = α1(x, ε) − α′

1(x, ε) − α′
1(x, µ)

α1(x, ε) − α1(x, µ)
(6.8)

and using again (6.3), one obtains the finite difference Bäcklund equation

α2(x, ε, µ) = −α1(x, µ) − ε − µ

α1(x, ε) − α1(x, µ)
(6.9)

which determines algebraically the superpotential for each next intertwining step under
the condition that one knows at least two (alternative) previous steps with two different
factorization constants. This seems the reason why many structuralists consider the
intertwining, Darboux and Bäcklund transformations as practical synonyms, at least for all
cases involving the Riccati equations (see [102, 103, 198, 199]).

In spite of these results some questions are open. It calls attention that the Bäcklund
transformation (6.9) initially used to generate the ‘multisolitonic wells’, is not at all limited to
the transparent potentials. It can be applied to any potential V generating the deformed versions
V +δV . These deformations show some familiar patterns: the perturbations δV typically vanish
at infinity (except the periodic or quasi-periodic cases), the number of minima and maxima
increases as the transformation is repeated forming a qualitative soliton pattern (enough to
compare with [141, 200, 201]). A question arises whether the SUSY deformations of an



10022 B Mielnik and O Rosas-Ortiz

arbitrary potential are not the ‘second class members’ of the soliton community. In particular
(i) is it possible to find for the SUSY deformed versions of any V (x) some (presumably
nonlinear) propagation equation, which would keep the τ -dependent Hamiltonians isospectral?
(ii) If so, would some particular shapes of δV survive mutual collisions, as the solitons do on
the background of V0 ≡ 0? (iii) Would the SUSY deformations δV of any V0 enjoy some
transparency properties for a certain class of wave packets?

As to (i), (ii), there is no sign that the answer might be positive. Yet, (iii) could make
sense if the concept were properly understood. Of course, it would be irrelevant to speak about
reflection and transition coefficients for a packet circulating in a (transformed) oscillator, but
on the other hand, the SUSY deformations are (almost) isospectral (see [90]) so they are
invisible if one observes the higher spectral lines. This suggests some alternative transparency
idea. As an example consider a ‘solitonic well’ Ṽ (x) with H̃ = − d2

dx2 + Ṽ (x) coupled by an

intertwiner A (of any order) with the free evolution H0 = − d2

dx2 , i.e.,

A†H0 = H̃A† ⇔ H0A = AH̃ . (6.10)

Then, one has also

A† eiλH0 = eiλH̃ A†, eiλH0A = A eiλH̃ . (6.11)

For the free Hamiltonian H0 the motion of the t-dependent Heisenberg observables p and
q reads

p(t) = eitH0p e−itH0 = p = const (6.12)

q(t) = eitH0q e−itH0 = q + pt. (6.13)

Following the idea of [157–160], consider the meta-observables

q̃ = A†qA, p̃ = A†pA (6.14)

and ask, how do they evolve in the presence of the transformed Hamiltonian H̃? Even though
the mapping H0 → H̃ is not unitary, one has

q̃(t) = eitH̃ q̃ e−itH̃ = eitH̃ A†qA e−itH̃ = A† eitH0q e−itH0A

= A†(q + pt)A = q̃ + p̃t (6.15)

and similarly,

p̃(t) = p̃ = const (6.16)

meaning that the evolution law for q̃(t), p̃(t) is not affected at all by the solitonic well Ṽ (x).
Choosing an initial wave packet |ψ〉 which vanishes fast enough for |x| → +∞, one can
assure that both average values 〈ψ |̃q|ψ〉, 〈ψ |̃p|ψ〉 are well defined. Now, if |ψ〉 evolves
according to H̃ , its ‘average velocity’ stays constant and its ‘renormalized centre’ 〈ψ |̃q|ψ〉
moves uniformly:

〈ψt |̃q|ψt 〉 = 〈ψ0 |̃q|ψ0〉 + t〈ψ0 |̃p|ψ0〉 (6.17)

so not only does the packet not suffer reflections but its ‘meta-centre’ q̃ moves smoothly. This
is no surprise if the packet represents the bound (stationary) state of the well with p̃ = 0,
q̃ = constant; a bit more unexpected if it has a part which is not trapped in the well (does it
mean that the ‘meta-centre’ does not feel the obstacle?). An analogous phenomenon repeats
itself if H0 and H̃ are the orthodox and deformed versions of the harmonic oscillator. Formula
(6.14) is valid, but now q̃(t) = q̃ cos wt + p̃ sin wt and p̃(t) = −q̃ sin wt + p̃ cos wt , the
behaviour shared by the average values 〈ψt |̃q|ψt 〉, 〈ψt |̃p|ψt 〉. Does it mean that the SUSY
deformation is in some sense invisible for the wave packet? (Cf Mentrup and Luban [202].)
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While the questions remain open, the progress of SUSY QM continues in several other
directions. The general Bäcklund idea, as outlined by Lamb [203], turns increasingly useful
in relativistic theories. It has been applied, e.g., to transform the heavenly equations of
the first into the second class [204, 205]. It is one of most promising techniques to
solve the GR-equations in matrix form [206], it also turns out to be an efficient tool to
clarify the structure of axially-symmetric solutions [207], to design the prolongation structures
[208] and hyper-heavens [209]. The intertwining has been applied in cosmology to transform
the normal modes [210]. Note also more implications in cosmology [211–215] as well as in
nonlinear QM [216]. The applications of the Dirac equation [61, 62, 65, 66], to the matricial
supersymmetry [217–221] and to the quantum Hamiltonians depending explicitly on time
[100, 222–224] seem promising.

While these are the natural lines of expansion, the intertwining might also touch some
more exotic problems.

7. Atypical models

To deform the traditional self-adjoint Hamiltonians is not the only option permitted by the
method. In fact, the axioms about the Hermitian operators and real spectra can be abolished in
some physical situations (cf [225, 226]). Thus, in orthodox QM the unstable states around the
local potential minima can be reasonably described as the ‘eigenfunctions’ of the self-adjoint
H with complex eigenvalues; the configurations called Gamov vectors [227, 228]. If H = H †,
the evolution e−itH conserves the norm, so the Gamov vectors cannot be normalizable (their
norms could not be attenuated). They belong to ‘rigged Hilbert spaces’ [229, 230]. Note
though, that they are not excluded from the factorization mechanism. The simplest example
is the repulsive oscillator

H = p2

2
− x2

2
= AB − i

2
(7.1)

where A = 1√
2
(p + x) , B = 1√

2
(p − x), B = A†. Quite obviously, HA = A(H − i),

so starting from the ‘vacuum’ B|�0〉 = 0 ⇒ |�0〉 = c0 ei x2

2 ⇒ H |�0〉 = γ0|�0〉, where

γ0 = −i/2 and applying A = −i ei x2

2
d

dx
e−i x2

2 one generates a sequence of Gamov vectors

|�n〉 = cnA
n|�0〉 = cnhn(x) ei x2

2 , with hn(x) = (−i)n e−ix2 dn

dxn eix2
and γn = −i

(
n + 1

2

)
. The

|�n〉 decay as |�n(t)〉 = e−(n+ 1
2 )t |�n〉, meaning simply that the wavefunctions, repulsed from

any finite region by V (x) = −x2/2, escape to ±∞ (enough to check currents!). The example
has no mysteries; it can be immediately derived by substituting → √−ix in the ordinary
attractive oscillator. Yet it shows that the Gamov vectors are not banished from the SUSY
QM. Indeed, some ‘repulsive Hamiltonians’ can be easily constructed by replacing A and B in
(7.1) by A and iB of Fernández et al [158], leading to the higher order differential operators
with explicitly known Gamov states. Could the atypical AB factorization play a similar role
for the Gamov spectra of the potential barriers as the traditional SUSY does for the potential
wells?

In Gamov’s theory the eigenvalues are complex but the Hamiltonians are real. This does
not exhaust the physical reality, where the states can be unstable not only due to propagation
or tunnelling, but also since the new reaction channels are open and the system ‘migrates’
from its initial Hilbert space. In this case, the effective Hamiltonian is no longer self-adjoint
but can have normalized eigenvectors with complex eigenvalues λ = E − i σ

2 , with σ > 0
defining the escape rates (cf [231]). Apart from the radiative decay, the phenomenon admits
quite elementary optical models. The simplest one is just the optical bench. Suppose, a beam
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Figure 3. The absorbing filters in the way of particle beams can be represented by non-unitary
linear operators [232].

of particles crosses a sequence of material obstacles (we imagine them as semitransparent
particle filters.) Each obstacle absorbs a fraction of the beam and performs some operation
on the rest. Assume that the operations, even if dissipative, do not mix states: if an incoming
beam was pure, so will be the transmitted one. If no state is completely absorbed, then the
action of each filter can be represented by a certain linear, non-unitary, non-singular operator
Y : H → H, which, in general, does not increase the norm (the norms mean the total beam
intensity), i.e. ||Yψ ||2 � ||ψ ||2. A well-known example is the polarized photons penetrating
through windows which transmit selectively distinct polarizations.

Since the beams partly perish, the operations performed by the filters cannot be considered
unitary; yet each one is described by a certain linear state transformation representing the
operation on the field vectors (see, e.g., [232]).

A certain tacit assumption is worth commenting on. When a bench operation is represented
by a non-Hermitian Hamiltonian with eigenvalues λ ∈ C, it is usually supposed that Im(λ) � 0,
meaning that the incident beam |θ0〉 can only lose particles. However, what is incident in one
experiment might be the output of previous filtering operations (see figure 3). If we delete one
of them, the intensity of the beam might well increase, so Im(λ) � 0 should not be forbidden.

An intriguing ramification of the subject is the quest for the so-called time operator [233–
238], motivated by the hope of arriving at a space–time quantization in which the space and
time variables would have equal status [239, 240]. Until now, the idea has been frustrated by the
fact that the ‘probability distribution on the time axis’ in the experiments with waiting detectors
(e.g. screens) does not correspond to the spectral measure of any self-adjoint operator. Recent
research points rather to the non-projective POV-measures [241–247], but even this intent has
some disadvantages (see, e.g., the discussions in [247, 248]). As it seems, the only chance
of describing the evolution of a micro-object in the presence of a waiting detector consists in
introducing a non-Hermitian (normal) Hamiltonian with complex eigenvalues [232, 249–251].

The problem of complex eigenvalues has recently been approached by the intertwining
methods [225, 226, 252–257]. Though merely taking its first steps, the idea might contribute,
e.g., to the solvable optical models or perhaps, extend the multichannel studies of Zakhariev
and Chabanov [92, 94, 97, 98] and perhaps approach the description of the ‘time operator’
[247]. The unsolved problem about the unitarity of the Cabibo matrix in QFT [258] is also
worth remembering.

The complex eigenvalues are only a part of the non-Hermitian story. Over the past
decades one can observe an increasing interest in complex potentials with real spectra, a
phenomenon characteristic of PT-symmetric systems [259–264]. A similar effect can appear,
under adequate asymptotic conditions, for real potentials perturbed by small imaginary parts,
V (x) + iφ(x) (see, e.g., Stepin [265]). An alternative source is also the atypical factorizations
H = AB + ε, where A = B† [257, 266, 267]. All systems of this kind no longer respond to
the Weisskopf–Wigner approach: though the eigenvalues are real, the eigensubspaces are not
orthogonal and their physical interpretation presents an open challenge.
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In the case of PT-symmetric Hamiltonians it has been noted [264, 268, 269] that they are
pseudo-Hermitian, with the corresponding spectral implications [270, 271]. Yet, all intents to
find a consistent probabilistic interpretation have been frustrated [272]. Still, further studies
reveal links of the pseudo-Hermitian (pseudounitary) operators with multiple areas including
cosmology (see Mostafazadeh [273]).

Recently Bender et al have formulated a new hypothesis concerning the diagonalizable,
non-Hermitian operators H = H † with real eigenvalues [274]. According to [274], the
physical interpretation of such operators requires a basic re-definition of the Hilbert space
metric, so that the eigensubspaces of H in a modified inner product become orthogonal. The
idea must be taken under caution, as it might affect various levels of physical theory. On
the most rudimentary level, the hypothesis seems to contradict the established paradigms.
An advantage of the orthodox state-observable structure in a fixed Hilbert space geometry
is that it can accommodate an infinity of self-adjoint QM observables, without the need
to redefine the metric every time a new one is introduced. Yet, by going deeper, one
faces unfinished structural discussions. In the quickly progressing modern theories (strings,
quantum gravity etc) one can see a remarkable contrast between the flexibility of the
cosmological–topological elements and rigidity of the quantum design, always repeating
the same general scheme of self-adjoint observables and complex amplitudes (even if living
on loops, branes, etc.) Looking from this perspective the effect predicted in [274] goes in a
different direction; it seems analogous to the geometry deformation by the presence of matter
in GR. In this case though, the structure affected would be the quantum logic [275–278],
describing the elementary yes–no measurements. In the orthodox QM these measurements
are represented by the orthogonal projectors in H. The results ‘yes’ and ‘no’ correspond
to the pairs of orthogonal subspaces, one of them rigidly determined by the other, which
means that the negation of the logic is unique. If, however, the theory admits non-Hermitian
diagonalizable operators with real spectra, the yes–no measurements could correspond to
non-Hermitian projectors whose ‘yes’ and ‘no’ subspaces are not orthogonal, and the
negation is no longer unique. The presence of diverse Hamiltonians (physical environment)
could create many different ways of negating the same property (the time-dependent case,
cf [279]).

In the orthodox axioms of quantum logic [275, 277] such flexible structures are not
permitted. This is no longer so in the generalized descriptions based on the convex set
geometry. Here, the fundamental object is the convex set S of all pure and mixed states of
a certain quantum system [280, 281]. For a general S, the typical quantum concepts exist,
but they may have a deformed structure. The ‘questions’ of the logic are now represented
by faces of the convex set S: any given face, in general, possesses many complementary
faces, illustrating many ways of applying the negation [282]. The entire structure has been
described on a purely abstract level, without assuming any concrete theory; presumably, it
could accommodate models where the Hilbert space metric is not absolute, but enforced by
physical surroundings (see the polemic discussions in [232, 282–284]). All this, of course,
must be taken with extreme caution. The future of the supersymmetric theories (including the
super-manifolds [79]) is no more predictable than the consequences of the Darboux theorem
and the Dirac stratagem were in 1882 and 1935. In fact, until now there are no Higgs bosons,
no ‘hybrid states’, no modified spaces, etc.

Yet, it is an achievement of the factorization that it has turned our attention to a number of
unsuspected structures. If one accepts the Wigner statement about the ‘unreasonable efficiency
of mathematics’ [285], they have to materialize at some moment. If not, the question arises,
what are they? Some abstract designs which are permitted to exist, but missed their chance?
Or our glimpses of an unknown universe?
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[48] Gendenshteı̈n L É and Krive I V 1985 Usp. Fiz. Nauk. 146 553–90
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Investigación y Estudios Avanzados, Mexico
[87] Dubov S Y, Eleonski V M and Kulagin N E 1992 Equidistant spectra of anharmonic oscillators JETP Lett. 75

446–51
[88] Dubov S Y, Eleonski V M and Kulagin N E 1994 Equidistant spectra of anharmonic oscillators Chaos 4 47–53
[89] Perez-Lorenzana A 1996 On the factorization method and ladder operators Rev. Mex. Fis. 42 1060–9
[90] Eleonski V M and Korolev V G 1995 On the nonlinear generalization of the Fock method J. Phys. A: Math.

Gen. 28 4973–85
Eleonski V M and Korolev V G 1997 Isospectral deformation of quantum potentials and the Liouville equation

Phys. Rev. E 55 2580–93
[91] Veselov A P and Shabat A B 1993 Dressing chains and the spectral theory of the Schrödinger operator Funct.

Anal. Appl. 27 81–96
[92] Chabanov V M and Zakhariev B N 1993 Absolutely transparent multichannel systems. Unexpected peculiarities

Phys. Lett. B 319 13–5
Chabanov V M and Zakhariev B N 1997 New situation in quantum mechanics (wonderful potentials from the

inverse problem) Inverse Problems 13 R47–79



Factorization: little or great algorithm? 10029

Chabanov V M and Zakhariev B N 2000 The qualitative theory of elementary transformations of one and
multichannel quantum systems in the inverse problem approach. The construction of transformations with
given spectral parameters Phys. Part. Nucl. 30 111–30

Chabanov V M and Zakhariev B N 2001 Coexistence of confinement and propagating waves: a quantum
paradox Phys. Lett. A 255 123–28

[93] Zakhariev B N, Kostov N A and Plekhanov E B 1990 Exactly solvable single-channel and multichannel models
(lessons in quantum intuition) Phys. Part. Nucl. 21 384–406

[94] Zakhariev B N and Chabanov V M 1994 Qualitative theory of spectrum, scattering and decay control (lessons
on quantum intuition) Phys. Part. Nucl. 25 662–78

[95] Chabanov V M and Zakhariev B N 2001 Resonance absolute quantum reflection at selected energies Phys.
Rev. Lett. 87 160408

[96] Zakhariev B N and Suzko A A 1990 Direct and Inverse Problems (Heidelberg: Springer)
[97] Chabanov V M, Zakariev B N and Amirkhanov I V 2000 Toward the quantum design of multichannel systems

Ann. Phys. 285 1–24
[98] Zakhariev B N and Chabanov V M 2001 Few-Body Syst. 30 143–7
[99] Andrianov A A, Ioffe M V and Spiridonov V P 1993 Higher-derivative supersymmetry and the Witten index

Phys. Lett. A 174 273–9
[100] Bagrov V G and Samsonov B F 1997 Darboux transformation of the Schrödinger equation Phys. Part. Nucl.

28 374–97
[101] Antonowicz M, Fordy A P and Wojciechowski S 1987 Integrable stationary flows: Miura maps and

bi-Hamiltonian structures Phys. Lett. A 124 143–50
[102] Dubrovin B A, Mateev V B and Novikov S P 1976 Non-linear equations of Korteweg–deVries type, finite–zone

linear operators and Abelian varieties Russ. Math. Surveys 31 59–146
[103] Adler V E 1994 Nonlinear chains and Painlevé equations Physica D 73 335–51
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Theoretical Physics Białystok, Poland
[173] Maximov V M and Odzijewicz A 1995 The q-deformation of quantum mechanics of one degree of freedom

J. Math. Phys. 36 1681–90
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[263] Lévai G and Znojil M 2000 Systematic search for PT-symmetric potentials with real energy spectra J. Phys.
A: Math. Gen. 33 7165–80

[264] Znojil M 2001 PT-symmetric square well Phys. Lett. A 285 7–10
Znojil M 2002 Should PT-symmetric quantum mechanics be interpreted as nonlinear? J. Nonlinear Math.

Phys. 9 (Suppl. 2) 122–33
[265] Stepin S 2001 On Friedrichs model in one-velocity transport theory Funct. Anal. Appl. 35 87–92

Stepin S 2003 On scattering and spectral analysis of nonselfadjoint Schrödinger-type operators Proc. XXII
Workshop on Geometrical Methods in Physics (Bialowieza, Poland) at press

[266] Cannata F, Junker G and Trost J 1998 Schrödinger operators with complex potentials but real spectrum Phys.
Lett. A 246 219–26

[267] Negro J, Nieto L M and Rosas-Ortiz O 2000 Refined factorizations for solvable potentials J. Phys. A: Math.
Gen. 33 7207–16

[268] Ahmed Z 2002 Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-
Hermitian Hamiltonians Phys. Lett. A 294 287–91

[269] Japaridze G S 2002 Space of state vectors in PT-symmetric quantum mechanics J. Phys. A: Math. Gen. 35
1709–18

[270] Pontrjagin L S 1944 Hermitian operators in spaces with indefinite metric Bull. Acad. Sci. URSS (Izv. Akad.
Nauk SSSR) Ser. Mat. 8 243–80

[271] Krein M G and Rutman M A 1950 Linear operators leaving invariant a cone in a Banach space Am. Math. Soc.
Transl. 26 199

[272] Ramı́rez A and Mielnik B 2003 The challenge of non-Hermitian structures in physics Rev. Mex. Fis. 49 S2
130–3

[273] Mostafazadeh A 2002 Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the
spectrum of a non-Hermitian Hamiltonian J. Math. Phys. 43 205–14



Factorization: little or great algorithm? 10035

Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-
Hermitian Hamiltonians with a real spectrum J. Math. Phys. 43 2814–6

Mostafazadeh A 2002 Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and
the presence of antilinear symmetries J. Math. Phys. 43 3944–51

Mostafazadeh A 2002 Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians J. Math. Phys.
43 6343–52

Mostafazadeh A 2002 Pseudounitary operators and pseudounitary quantum dynamics J. Math. Phys. 45 932–46
[274] Bender C M, Brody D C and Jones H F 2002 Complex extension of quantum mechanics Phys. Rev. Lett. 89

270401
[275] Birkhoff G and von Neumann J 1936 The logic of quantum mechanics Ann. Math. 37 823–43
[276] Finkelstein D 1963 The logic of quantum physics Trans. NY Acad. Sci. 25 621–37
[277] Piron C 1964 Axiomatique quantique Helv. Phys. Acta 37 439–68
[278] Van Fraassen B C 1973 A semantic analysis of quantum logic Contemporary Research in the Foundations and

Philosophy of Quantum Theory ed C Hooker (Dordrecht: Reidel) pp 80–113
[279] Mostafazadeh A 2004 Time-dependent Hilbert spaces, geometric phases, and general covariance in quantum

mechanics Phys. Lett. A 320 375–82
[280] Ludwig G 1964 Versuch einer axiomatischen grundlegung der quantenmechanik und allgemeinerer

physikalischer theorien Z. Phys. 181 233–60
Ludwig G 1967 Attempt of an axiomatic foundation of quantum mechanics and more general theories. II

Commun. Math. Phys. 4 331–48
Ludwig G 1968 Attempt of an axiomatic foundation of quantum mechanics and more general theories. III

Commun. Math. Phys. 9 1–12
[281] Mielnik B 1969 Theory of filters Commun. Math. Phys. 15 1–46

Mielnik B 1974 Generalized quantum mechanics Commun. Math. Phys. 31 221–56
[282] Mielnik B 1976 Quantum logic: is it necessarily orthocomplemented? Quantum Mechanics, Determinism,

Causality and Particles ed M Flato et al (Dordrecht: Reidel)
[283] Bell J and Hallet M 1982 Logic, quantum logic and empiricism Phil. Sci. 49 355–79
[284] Gisin N and Rigo M 1995 Relevant and irrelevant nonlinear Schrödinger equations J. Phys. A: Math. Gen. 28

7375–90
[285] Wigner E P 1979 Symmetries and Reflections (Woodbridge, CT: OxBowPress) p 237


